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Abstract

This work presents a new procedure for extrapolating velocities at the outflow boundary in the computations of

incompressible flows around rigid bodies. The extrapolation procedure is based on the radial variation of the velocity

field at large distances from the rigid body, which can be inferred from mass conservation and vorticity considerations.

Since the extrapolation is based on these physical considerations, the proposed boundary condition is considered to be

physically consistent. It has been demonstrated, via numerical simulations of 2D, laminar, incompressible, viscous flow

past a circular and a square cylinder at Re = 100, that the application of the proposed boundary condition allows one to

limit the unbounded domain to a small size (6–8 times the characteristic size of the body) without any significant change

in the flow characteristics like the lift coefficient (CL) and the Strouhal number (St). Thus, the proposed boundary

conditions can enhance the computational efficiency of this class of flows.
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1. Introduction

In the CFD simulation of unsteady flow around a body in an open domain extending to infinity, the

selection of proper outflow boundary conditions is a critical issue. In steady flows boundary conditions like

pressure being constant or a vanishing gradient of any flow variable in the stream wise direction (Neumann
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boundary condition, NBC) are often used. The computations involving NBC, however, require the place-

ment of the outflow boundary at a large distance in the downstream direction of the body. Okajima [1] and

Stegall and Rockliff [2] employed NBC in computing 2D flows past a square cylinder. The outflow bound-

ary in [1,2] was placed at 125 and 100 times the characteristic size of the cylinder, respectively. It is also

known that for unsteady flows like the vortex shedding flows past bluff bodies, such conditions do not
perform well and lead to distortion in the flow field near the outflow boundary.

One method which has been used by researchers, which seems to work well in unsteady flow situations

for weakly convective flows, is the convective boundary condition (CBC), where an equation of type (1) is

used on the outflow boundary
ou
ot

þ �u
ou
on

¼ 0; ð1Þ
where u is any flow variable like the velocity component and �u is the convective velocity of flow structures,

prescribed in a rather ad hoc way or by trial and error. Such a boundary condition was proposed by Orlan-

ski [3] for the problems governed by hyperbolic system of equations.

The CBC has been used by Najjar and Vanka [4] and Najjar and Balachandran [5] in computing uniform

flow past a normal flat plate. Cheng and Armfield [6] have employed it in computing uniform, two-dimen-

sional flow past a circular cylinder. It has also been employed by Pauley et al. [7], Arnal et al. [8], Sohankar
et al. [9] and Biswas and co-workers [10] for the computations of uniform, two-dimensional flow past a

square cylinder. However, it is felt that the CBC lacks in a proper physical basis for elliptic and parabolic

problems and it is also somewhat awkward to implement. The quantity �u in (1) is loosely defined in the

literature as different authors have defined it in a different manner [4–7]. The value of �u, which yields min-

imum distortion in the vorticity structure at the exit, has to be determined by trial.

A slightly different boundary condition has been used by Braza et al. [11]. To analyze the uniform flow

past a circular cylinder, logarithmic-polar coordinates, defined as x = h and y = ln r, have been used. The

outer boundary has been divided into a wake region and a region outside the wake. It is assumed that
at infinity the flow is governed by Oseen�s linearized equations which results in the following conditions

at the outer boundary:

In the wake region:
o~V
oy

 !
y¼y1

! 0: ð2Þ
Outside the wake region:
~V ðx; yÞy¼y1
! ~U1; ð3Þ
where ~U1 is the free stream velocity.

The major drawback of this type of boundary condition is that a priori knowledge of the width of the

wake on the outer boundary is needed for its application.
It is observed that the limitations of different types of boundary conditions employed by different work-

ers are: (1) the numerical domain must extend to a large distance downstream of the body and (2) the appli-

cation of the boundary condition involves guessing the value of some parameter (for e.g., �u in CBC or width

of the wake region [11]).

This work aims to circumvent these problems by providing an extrapolation procedure, which has a

stronger physical basis and can be implemented in a straightforward manner without any trial or guess

work. The primary motivation for this work comes from the fact that the computational efficiency of flows

around immersed bodies can be enhanced if the size of the computational domain around the body can be
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limited to relatively smaller dimensions without affecting the results significantly. This can be achieved if the

boundary conditions employed at the outflow boundary are based on the physical behavior of the flow field

at large distance from the body. Since the proposed boundary conditions involve physical considerations of

mass conservation and vorticity, they have been referred to as the physical boundary conditions (PBCs).

The velocities at the outflow boundary are extrapolated from the interior in the computations of incom-
pressible flows around rigid bodies, stationary or in motion, using structured or unstructured grids. The

PBC involves an extrapolation procedure based on the expected radial variation of velocity field at large

distances from the rigid body, which can be inferred from mass conservation and vorticity considerations.

There is no ad hoc quantity needed to use this procedure. In case the grid lines are extending in a radial

direction, then the application of the method is quite straightforward. Even if the grid lines are not radial,

then also the method can be employed by suitable interpolation procedures. This has been demonstrated

for a general curvilinear and a Cartesian grid. Extension to other grids (structured or unstructured) can

be handled in a similar manner. Though the extrapolation procedure presented here is for 2D flows, the
concept can be readily extended to three dimensions.

To demonstrate the validity of the procedure and to assess its performance, the problems of 2D, viscous,

incompressible flow past a circular and a square cylinder are considered. Numerical simulations for both

the cases have been carried out at Re = 100. This Re has been selected in order to demonstrate the perfor-

mance of PBC in the unsteady, vortex shedding regime.

All numerical simulations have been carried out on a non-staggered, structured, curvilinear, body-fitted,

O-type grid. The transformed Navier–Stokes equations have been discretized using the finite difference

approach and a semi-explicit pressure correction algorithm is employed [12]. Numerical simulations, for
circular as well as the square cylinder, have been carried out by placing the far field boundary at different

distances from the body. The maximum and minimum distances considered are 20 and 6 times the charac-

teristic size of the body, respectively. Thus, the extent to which the numerical domain can be shrunk when

the PBC is applied can be estimated. Further, the effect of limiting the domain to progressively smaller

dimensions can also be quantitatively assessed. For different boundary placements, the lift coefficient

(CL), the drag coefficient (CD), Strouhal number (St), vorticity and velocity fields near the exit and near

the cylinder are compared.
2. Mathematical formulation

In this section, the variation of the velocity field in the radial direction at very large distances from the

body is deduced. The procedure to exploit this radial behavior in extrapolating the velocities from the inte-

rior to the outflow portion of the artificial boundary for radial grids, structured body fitted grids and struc-

tured Cartesian grids is also presented.

2.1. Boundary conditions at infinity

The behavior of 2D velocity field at large distances from a rigid infinite body placed in a uniform stream

of velocity ~U1 is analyzed. Consider a surface S of unit depth enclosing the body as shown in Fig. 1. Let
~V ð~r; tÞ represent the velocity field around the body. From the analytical point of view, it is known that
lim
j~rj!1

~V ð~r; tÞ ¼ ~U1: ð4Þ
In a numerical simulation it is impractical to use (4) as it involves the placement of the outer boundary at

very large distances from the body. If the analytical behavior of ~V ð~r; tÞ is known as j~r j! 1, then it can be
effectively utilized to numerically incorporate the analytical behavior in the computer simulations. The



Fig. 1. Illustration for any external surface S enclosing a rigid body Sb and region X.
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following considerations provide the desired behavior. Let the perturbed velocity field ~V
0ð~r; tÞ generated due

to the presence of the body be defined as
~V
0ð~r; tÞ ¼ ~V ð~r; tÞ � ~U1: ð5Þ
From continuity equation it can be deduced that
~r � ~V 0 ¼ ~r � ~V ¼ 0: ð6Þ

Applying Gauss theorem to the perturbed velocity field,
Z

X

~r � ~V 0� �
d8 ¼

Z
S

~V
0 � n̂ dS �

Z
Sb

~V
0 � n̂ dS ¼ 0 )

Z
S

~V
0 � n̂ dS ¼

Z
Sb

~V
0 � n̂ dS: ð7Þ
The perturbed velocity field at the surface of the body is given as
~V
0 ¼ ~Ubð~r; tÞ � ~U1; ð8Þ
where ~Ubð~r; tÞ is the velocity at the surface of the body (assuming the body to be deformable). Substituting

(8) in (7) leads to
Z
S

~V
0 � n̂ dS ¼

Z
Sb

~Ubð~r; tÞ � ~U1
� �

� n̂ dS: ð9Þ
Since
R
Sb
~U1 � n̂ dS ¼ ~U1 �

R
Sb
n̂ dS ¼ 0, it can be deduced that
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Z
S

~V
0 � n̂ dS ¼

Z
Sb

~Ubð~r; tÞ:n̂ dS: ð10Þ
The integral on the right-hand side in (10) represents the rate of change of the volume of the body and it

vanishes for a non-deforming rigid body.

Thus,
Z
S

~V
0 � n̂ dS ¼ 0: ð11Þ
The integral in (11) must be independent of the shape of the surface S and its distance from the body.

Hence, to analyze the local behavior of the velocity field at any point on the surface S, consider a local

cylindrical surface Scyl of radius �r� and unit depth passing through the point under consideration (Fig. 1)
I
Scyl

ðvr � V r1Þr dh ¼ 0: ð12Þ
Hence it can be inferred that if the integral must vanish for infinitely large �r�, then (vr � Vr1) must behave

at least as follows:
ðvr � V r1Þ �
1

r2
; r ! 1; where r ¼ j~rj: ð13Þ
It can be readily verified that as r ! 1, vr ! Vr1, where Vr1 is the radial component of the undisturbed

uniform velocity field ~U1. These conditions have been described in [13] but have not been used, to the best

of the knowledge of the authors, in the numerical computations. The expression in (13) actually implies that

if the perturbed radial velocity is expanded in a power series of (1/r) as r approaches infinity, the expansion

must begin with a quadratic term.

To obtain the behavior of the complete 2D velocity field, one needs to analyze the behavior of vh as well.
For this purpose consider two irreducible circuits C1 and C2 enclosing the body as shown in Fig. 2. Let D

denote the region between C1 and C2. Taking the curl of (5),
Fig. 2. Illustration of two irreducible circuits C1 and C2 enclosing a region D.
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~-0 ¼ ~-: ð14Þ

Eq. (14) is the mathematical statement of the fact that the presence of the body in a uniform stream gen-

erates the vorticity in the flow field. If C1 and C2 are the counterclockwise circulations around C1 and C2,

respectively, then utilizing Stokes theorem leads to
Z
D
-0 dA ¼ C1 � C2: ð15Þ
In viscous flows, far away from the body, the vorticity is usually quite small. If C1 and C2 are every-

where far from the body, then the left-hand side of (14) is generally quite small and negligible. Since C1

and C2 are two arbitrary contours, the circulation C around a circuit becomes nearly constant and

approximately independent of the shape and distance of the circuit from the body. To analyze the ra-

dial behavior of vh at a point on the contour C1, consider a circular contour C of radius �r� passing
through the point under consideration on C1 at a large distance from the body (Fig. 2). The circulation

on C is given as:
C ¼
I
C

ðvh � V h1Þr dh: ð16Þ
Since C is approximately constant and independent of �r� then there are only two possibilities, either C is
non-zero or zero
I

ðvh � V h1Þr dh ¼ 0 if C ¼ 0;I
ðvh � V h1Þr dh 6¼ 0 if C 6¼ 0:
Thus, as r ! 1, (vh�Vh1) must behave as follows:
ðvh � V h1Þ �
1

r2
if C ¼ 0; ð17aÞ

ðvh � V h1Þ �
1

r
if C 6¼ 0: ð17bÞ
Again it is observed that as r ! 1, vh ! Vh1, where Vh1 is azimuthal component of undisturbed velocity

field at infinity. The circulation C for C1 can be computed in a direct non-iterative manner at the given time

since the velocity field is being calculated in the interior. As with the perturbed radial velocity, relations

(17a) and (17b) are truncated forms of the more general asymptotic expansions involving higher powers
of (1/r).
2.2. Implementation of the boundary condition

The behavior of the velocity field as given by (13) and (17) at large distances from the body can be uti-

lized in a straightforward manner to extrapolate velocities from the interior on to the outflow boundary of

the computational domain. However, since (13) and (17) express the variation of velocity field in the radial

direction, it is quite obvious that the extrapolation must take place in the radial direction. This is not so
restrictive as it appears. By employing suitable interpolation procedures for non-radial grids, the radial

extrapolation of velocities onto the outflow boundary can be achieved in a straightforward manner. The

implementation aspects of the boundary conditions given by (13) and (17) on structured polar, structured

body fitted and Cartesian grids are discussed below.
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2.2.1. Structured polar grid

The extrapolation procedure is straightforward to apply on a structured polar grid and is explained

with the aid of Fig. 3(a). Fig. 3(a) shows a portion of two constant radii curves r = r1 and r = r2 and a

constant h line in a structured polar grid. The outer boundary of the domain in the physical plane is

represented by r = r2 and r = r1 is the constant radius curve adjacent to r = r2. The extrapolation
Fig. 3. Illustrations for implementation of boundary conditions on (a) radial grid, (b) body fitted grid, (c) Cartesian grid.
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involves obtaining the velocity field at a typical boundary grid point 2 on r2. The grid point 1 lies on

r = r1 and also on the constant h line connecting point 2 to point 1. Since point 1 is the nearest radial

neighbor of point 2 in the structured grid, the velocity components vr and vh at point 2 can be readily

computed using (13) and (17) as:
ðvr � V r1Þ1r21 ¼ ðvr � V r1Þ2r22:
Since the extrapolation is radial, (Vr1)1 = (V r1)2
ðvrÞ2 ¼
r1
r2

� �2

ðvrÞ1 þ ðV r1Þ2 1� r1
r2

� �2
( )

: ð18Þ
Similarly,
ðvhÞ2 ¼
r1
r2

� �2

ðvhÞ1 þ ðV h1Þ2 1� r1
r2

� �2
( )

if Cr¼r1 ¼ 0;

ðvhÞ2 ¼
r1
r2

� �
ðvhÞ1 þ ðV h1Þ2 1� r1

r2

� �� �
if Cr¼r1 6¼ 0:

ð19Þ
For grids which do not possess radial grid lines, Eqs. (18) and (19) can still be utilized, provided that: (1) the

nearest radial neighbor of the boundary point under consideration can found in the grid and (2) a suitable
interpolation procedure is devised to obtain the values of the radial and circumferential velocities at this

point. This is shown specifically for a structured body fitted and a Cartesian grid in the succeeding sub-

sections.
2.2.2. Structured body fitted grid

Fig. 3(b) shows a portion of two constant g lines g = g1 and g = g2 and a constant n line n = n1. The outer
boundary of the domain in the physical plane is represented by g = g2 and g = g1 is the constant g curve

adjacent to g = g2. The extrapolation involves obtaining the velocity field at a typical boundary grid point
2 on g2. The grid point A is the intersection point of g = g1 and n = n1 curves. Since n = n1 line in general

may not be radial, the radial line from point 2 intersects g = g1 curve at some point 1 in the neighborhood of

point A (Fig. 3(b)). Thus, point 1 is the nearest radial neighbor of point 2 on the structured grid. To locate

point 1, it is sufficient to determine the value of the n coordinate associated with the point. This can be done

by the following procedure. Let the coordinates of point 1 and 2 be given as (x1,y1) and (x2,y2), respec-

tively. The coordinates of point 2 are known from the grid. The coordinates of point 1 can be related to

the coordinates of the neighboring point A by expanding the coordinates in a Taylor series around the

point A. This yields
y1 ¼ yA þ oy
on

� �
A

ðn1 � nAÞ þO ðn1 � nAÞ2
h i

; ð20Þ

x1 ¼ xA þ ox
on

� �
A

ðn1 � nAÞ þO ðn1 � nAÞ2
h i

: ð21Þ
Since the points 1 and 2 lie on the same radial line,
y1
x1

¼ y2
x2

: ð22Þ
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Combining (20)–(22), a first order accurate expression for (n1 � nA) can be written as
ðn1 � nAÞ ¼
ðy2xA � yAx2Þ

oy
on

n o
A
x2 � ox

on

n o
A
y2

� � : ð23Þ
The radial and circumferential velocities at point 1 can now be readily determined again through a Taylor

expansion for any flow variable in the neighborhood of point A as given below:
/1 ¼ /A þ o/
on

� �
A

ðn1 � nAÞ þ
o
2/

on2

� �
A

ðn1 � nAÞ2

2
þO½ðn1 � nAÞ3�: ð24Þ
Hence, the radial and circumferential velocities are first obtained at point A and the subsequent application

of (24) yields the corresponding velocities at point 1. Once the radial and circumferential velocities at point

1 are known, Eqs. (18) and (19) can be readily utilized to yield the corresponding velocities at the boundary
point 2. It is worth mentioning here that computations using body fitted coordinates generally involve

Cartesian velocity components. Thus, vector transformation laws have to be used to convert Cartesian

velocity components into polar ones and vice versa as per the requirements.

From the numerical point of view, usage of (18) and (19) requires computation of (vr)1, (vh)1 and C on

g = g1. Since the velocity field is being computed in the interior with the help of basic equations of flow, it is

known at the time of application of boundary condition. So these quantities can be readily computed in a

direct non-iterative manner adding little to the overall computational efforts.

2.2.3. Cartesian grid

Fig. 3(c) illustrates the procedure for implementation of boundary conditions on a Cartesian structured

grid. Let x = x2 be the outflow boundary grid line and x = x1 be the adjacent grid line. Let / be the slope of

the radial line drawn from a typical boundary grid point 2. This radial line intersects x = x1 at y1 which can

be written as
y1 ¼ y2 � ðx2 � x1Þ tan/: ð25Þ

This gives the location of point 1 on grid line x = x1. Let the nearest neighbor of point 1 on the grid line

x = x1 be point A (Fig. 3(c)). The value of any flow variable can be obtained at point 1 employing Taylor

expansion around point A
/1 ¼ /A þ o/
oy

� �
A

ðy1 � yAÞ þ
o
2/
oy2

� �
A

ðy1 � yAÞ
2

2
þO½ðy1 � yAÞ

3�: ð26Þ
Both (vr)1 and (vh)1 can thus be obtained at point 1 from (26). Finally, the boundary values of vr and vh at

point 2 are obtained from (18) and (19).
3. Governing equations and numerical scheme

In this section, the governing equations in generalized body fitted coordinates are presented. The flow

past a circular and a square cylinder has been computed using a body fitted coordinate system. For this

purpose an elliptic grid with an o-type of topology is generated around the body [14]. Figs. 4(a) and (b)

show the typical domains of the numerical calculations in the physical plane together with the boundary

fitted coordinate system for the circular and the square cylinder, respectively. The approaching free stream

is aligned with the positive x-direction for both the problems. The simulations are carried out using a semi-

explicit, pressure correction algorithm [12] similar to SMAC. A brief description of the numerical scheme is
given in Section 3.2.



Fig. 4. Illustrations showing definitions of Cartesian and body fitted coordinates employed for (a) circular cylinder (b) square cylinder.
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3.1. Governing equations

The non-dimensional governing equations (continuity and momentum), transformed in the body fitted

coordinate system [14], are given as follows:

Continuity:
yg
J

o

on
�
yn
J

o

og

� �
U þ � xg

J
o

on
þ xn

J
o

og

� �
V ¼ 0: ð27Þ
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x-Momentum:
oU
os

þ U n oU
on

þ U g oU
og

¼ �
yg
J

op
on

�
yn
J

op
og

� �
þ 1

Re

� �
a
o2U

on2
� 2b

o2U
on og

þ c
o2U
og2

� �
: ð28Þ
y-Momentum:
oV
os

þ U n oV
on

þ U g oV
og

¼ � � xg
J

op
on

þ xn
J

op
og

� �
þ 1

Re

� �
a
o
2V

on2
� 2b

o
2V

on og
þ c

o
2V
og2

� �
: ð29Þ
Un and Ug are the dimensionless velocities in n and g directions.
U n ¼
yg
J

� �
U � xg

J

� �
V ;

U g ¼ �
yn
J

� �
U þ xn

J

� �
V :

ð30Þ
In (28) and (29) p is the dimensionless pressure defined as
p ¼ P � P1

qU 2
1

; ð31Þ
where P and P1 are the dimensional pressure and the undisturbed free stream pressure, respectively.

The quantities a, b, c and J appearing in Eqs. (27)–(29) are defined as
a ¼ ðy2g þ x2gÞ=J 2;

b ¼ ðygyn þ xgxnÞ=J 2;

c ¼ ðy2n þ x2nÞ=J 2;

J ¼ xnyg � xgyn:

ð32Þ
The various global parameters characterizing the flow are defined as
Lift coefficient ¼ CL ¼ 2F y

qU 2
1‘

; ð33aÞ

Drag coefficient ¼ CD ¼ 2F x

qU 2
1‘

; ð33bÞ
and
Strouhal number ¼ St ¼ f ‘
U1

; ð33cÞ
where Fx and Fy are the sum of both viscous and pressure forces in the x and y directions, respectively, f is

the shedding frequency, U1 is the magnitude of the undisturbed free stream velocity and ‘ is the charac-

teristic length scale. The characteristic length scales for the circular and square cylinder are taken to be

the diameter D and the length of the edge H, respectively.

3.2. Numerical scheme

To capture the unsteady physics of the flow, a semi-explicit, pressure correction type of scheme is
employed on a non-staggered curvilinear mesh. The concept of momentum interpolation of Rhie and Chow

[15] is utilized in order to avoid grid scale pressure oscillations that can result due to the decoupling between

the velocity and the pressure at a grid point. The scheme is described by Hirsch [12] and is conceptually



672 N. Hasan et al. / Journal of Computational Physics 206 (2005) 661–683
similar to the SMAC algorithm given by Amsden and Harlow [16]. Kim and Benson [17] and Cheng and

Armfield [6] have demonstrated the computational efficiency of SMAC scheme over the SIMPLE, SIM-

PLEC and PISO methods for computing of unsteady, incompressible flows. Thus, the present work also

utilizes a scheme that is essentially similar to SMAC.

The scheme involves an explicit, first order time integration of the momentum equations to obtain a
guessed velocity field at the new time level. The guessed velocity field does not satisfy the continuity equa-

tion at the new time level. It is then corrected via a pressure correction field in a manner so as to preserve

the vorticity while bringing the divergence of velocities near to zero. The pressure correction field is

obtained via the pressure correction Poisson equation (PCPE). This procedure is similar to the SMAC algo-

rithm [16].

The discretization of PCPE needs to be handled carefully as the central discretization of terms on both

sides of the equation leads to an effective discrete equation on a mesh twice as coarse as the actual grid.

Further, the central discretization of the divergence term involving guessed velocities results in the decou-
pling of pressure and velocity. These effects generally lead to spurious grid scale pressure oscillations

[6,18]. To ensure that the scheme does not permit such non-physical solutions specifically due to the

above-mentioned reasons, the discretization of PCPE has to be done with care. The Laplace operator

in PCPE is discretized in a compact manner by defining the discrete divergence operator on points mid-

way between the grid points. The divergence of guessed velocity is obtained through the momentum

interpolation procedure [15]. The momentum interpolation involves obtaining the velocities midway

between adjacent nodes through a special procedure which helps in maintaining the coupling between

the velocity and pressure.
In the discretization of momentum equations, the convection terms are discretized using fourth order

central differencing scheme in the interior and second order central differencing near the cylinder and near

the outer boundary. The viscous terms are discretized using fourth order central differencing scheme. The

pressure gradients are discretized using second order central differencing. The discrete Poisson equation is

solved using a nine point SIP procedure [18] with a residual tolerance of 10�3.

3.3. Boundary and initial conditions

In the numerical scheme employed, boundary conditions have to be specified for velocities, pressure cor-

rection field and the pressure field. The velocity field is specified as uniform flow at the inflow portion of the

outer boundary. On the outflow portion, it is extrapolated from the interior using (18) and (19). The no-slip

condition is specified on the solid surface. At the solid surface and at the inflow boundary, the gradient of

pressure correction field in the g direction is taken to be zero. At the outflow, the pressure correction is ta-

ken to be zero. The conditions on pressure correction are essentially the same as employed in [6]. The

boundary conditions on pressure are to be selected much more carefully if the numerical simulations are

to be carried out on a heavily truncated domain. The pressure on the solid surface and on the inflow bound-
ary is updated by obtaining the value of pressure gradient in the g direction through full momentum equa-

tions as follows:
op
og

¼ op
ox

� �
ox
og

� �
þ op

oy

� �
oy
og

� �
: ð34Þ
The pressure gradients in the x and y directions at the boundaries (solid and inflow) are obtained through

the x and y momentum equations, respectively. At the outflow, the traction free conditions proposed by

Gresho [19] are employed to obtain the pressure. This leads to a condition of the following type:
�P þ 2l
oun
on

� �
¼ 0: ð35Þ
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In the above equation �n� is the local normal direction at the boundary. This condition has also been used by

Cheng and Armfield [6]. Initially, the flow field is taken to be uniform having undisturbed free stream values

of velocity and pressure in the interior of the flow domain.
4. Validation

Validation of the code is done by solving uniform flow past a circular cylinder for a range of Re from 20

to 100. The values of Re are based on the cylinder diameter. This range of Re spans both the steady and the

unsteady regimes. Validation is done both quantitatively and qualitatively on a grid of 91 · 121 with the

outer boundary placed at 20 diameters away. In the steady flow regime, the length of separation and

the pressure distribution over the cylinder are compared. Table 1 compares the dimensionless length of

the separation zone in the wake (L/D) at Re = 20 and Re = 40 to the numerical results in [6,11]. It can
be seen that the deviation is less than 1%. In Fig. 5, temporal growth of the separation length at

Re = 40 is compared with the experimental data of Coutanceau and Bouard [20] and with the numerical

results in [6]. It can be seen that the results from the present work match very well with those given in [6,20].

The other important characteristic is the pressure distribution over the cylinder. The coefficient of pres-

sure (Cp) at Re = 40 is plotted over the upper half of cylinder in Fig. 6. It is defined as:
Table

Length

Reyno

20

40
Cp ¼ 1þ P � P 0

qU 2
1

: ð36Þ
In (36) P0 is the dimensional pressure at the front stagnation point. It can be seen that the present calcu-

lations agree well with the experimental data of Grove et al. [21] and the numerical data in [6].

In the unsteady vortex shedding regime, an important flow characteristic is the Strouhal number (St) as

defined in (33c). In this unsteady regime Re was varied from 50 to 100 in steps of 10. Fig. 7 compares the

variation of St with Re for the present calculations with the results given by Barkley and Henderson [22]. It
is observed that the deviation between the two data is less than 1%.

Simulations were carried out for Re = 46 and Re = 47 to check if the numerical scheme is able to predict

the inception of instability. Barkley and Henderson [22] predicted that the breakdown of steady state takes

place at Re = 46 ± 1 through a supercritical Hopf bifurcation. It is observed that the flow remains steady at

Re = 46. At Re = 47 a single frequency periodic flow with vortex shedding is observed (Fig. 8).
5. Results and discussion

A suitable outflow boundary condition for flows around immersed bodies should possess two important

properties: It should allow the flow to exit the domain with minimum distortion of the flow structure, and it

should permit the computations on a heavily truncated domain with negligible effect on the flow as the arti-

ficial boundary is brought closer to the body. For problems involving an artificial boundary, introduced to

truncate an otherwise infinite domain, it is of interest to examine the extent of truncation upto which a
1

of separation zone in the wake at different Reynolds number

lds number (Re) Length of separation zone in the wake (L/D) Error %

PBC Published

0.9328 0.94 [6] 0.7%

2.3068 2.30 [6,11] 0.2%



Fig. 5. Variation of dimensionless separation length (L/D) with time for circular cylinder at Re = 40.

Fig. 6. Variation of coefficient of pressure over the upper surface for circular cylinder at Re = 40.

674 N. Hasan et al. / Journal of Computational Physics 206 (2005) 661–683
given outflow boundary condition retains these two properties. This has a direct bearing on the cost of

computing such flows. In this section, the performance of PBC is examined in the context of the above-

mentioned criteria.

To assess the performance of PBC, computations were carried out for uniform flow past a circular cyl-

inder and a square cylinder at Re = 100. At this Re, the flow for both configurations is unsteady and in-

volves vortex shedding. The effect of shortening the outer boundary is studied by placing the outer
boundary at distances of 6, 8, 10, 12 and 20‘, where �‘� is the characteristic size of the body. These distances
are measured from the center of the cylinders. To ensure that the computations carried out for different

levels of truncation of the flow domain reflect the effects of boundary placement only, the grid generated

for the case of 20‘ is simply truncated and employed for the other cases. This ensures that the grid spacings

remain the same for all the cases. To assess the effect of boundary placement on the flow structure of the

wake, particularly, near the outflow boundary, the vorticity and streamline contours are plotted. To



Fig. 7. Variation of Strouhal number with Re.

Fig. 8. Variation of CL with time at Re = 47.
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examine the effect of boundary placement on the flow field near the cylinders, parameters like Strouhal

number (St), peak values of lift coefficient (CL) and time average drag coefficient ð�CDÞ are compared.
The time histories of CL are also compared.

The grids employed for cases of 6, 8, 10, 12, 20‘ have 121 · 124, 121 · 138, 121 · 148, 121 · 157 and

121 · 181 points, respectively. The grids are stretched in the physical space in the g direction. A non-dimen-

sional time step of 1 · 10�3 has been employed for all the cases.

5.1. Uniform flow past a circular cylinder (Re = 100)

Table 2 shows the effect of placement of outflow boundary at 6D, 8D, 10D, 12D and 20D for the case of
circular cylinder at Re = 100 (where �D� is the diameter of the cylinder). The parameters like St and peak



Table 2

The effect of far field boundary placement on Strouhal number and peak lift coefficient for uniform flow past the circular cylinder at

Re = 100

Far field boundary Strouhal number (St) Peak lift coefficient (CL) Average drag coefficient ð�CDÞ
6D 0.1667 0.319 1.4239

8D 0.1667 0.307 1.3812

10D 0.1667 0.298 1.3581

12D 0.1667 0.305 1.3606

20D 0.1667 0.2958 1.3606

Numerical [11,22,23] 0.16 0.295 1.36

Experimental [20] 0.1667 – –
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values of CL are compared with the experimental and numerical values in [11,20]. It can be seen that as the

outflow boundary is brought nearer to the cylinder from a distance of 20D to 6D, the deviations in the peak

values of CL from the value reported in [11] increase from 0.2% to 5%. However, there is no deviation in St

and the values at different boundary placements matches with those in [11,20]. The values of �CD match very

well for the case of 20D with the data from [23]. The increase in �CD as the boundary is brought closer from

a distance of 20D to 6D is about 4.4%.
Fig. 9 compares the time evolution of CL for cases of 20D, 12D and 8D. It is interesting to observe that

the growth rate and the frequency of the perturbations are not affected significantly. Only a phase shift is

observed as the outer boundary is brought closer. This result is quite significant as it demonstrates that the

usage of PBC on a heavily truncated domain does not significantly affect the amplitude growth rate and

the oscillation frequency of the unstable mode or perturbation. The increase in the deviation observed in

the peak values of CL, as the outer boundary is brought closer to the body, is inevitable as the outflow

boundary conditions have been derived from the anticipated behavior of the flow field at large distances.

Figs. 10(a)–(e) show the instantaneous vorticity contours in the wake region and near the exit for outer
boundary placements at 6D, 8D, 10D, 12D and 20D, respectively. Since there is a phase shift, the snaps are
Fig. 9. Variation of CL at Re = 100 for different boundary placements for flow past a circular cylinder.



Fig. 10. Instantaneous vorticity contours for circular cylinder near outflow boundary for different boundary placements of (a) 6D

(b) 8D (c) 10D (d) 12D (e) 20D at Re = 100.
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taken at the same phase of the shedding cycle for comparison. It can be seen that there is no distortion of

vortices near the exit as the outer boundary is brought closer from 20D to 6D. The contour values indicate
that the flow field is only slightly affected by bringing the outer boundary nearer to the cylinder. To observe

the effects of boundary placement on the flow pattern, stream function contours at the same phase of the

shedding cycle for outer boundary placements at 6D, 8D, 10D, 12D and 20D are shown in Figs. 11(a)–(e).

These figures show that the different boundary placements have a negligible effect on the flow structure in

the wake and near the cylinder.

5.2. Uniform flow past a square cylinder (Re = 100)

Table 3 shows the effect of placement of outer boundary at distances of 6H, 8H, 10H, 12H and 20H from

the center of the square cylinder at Re = 100. The parameters like St, peak value of CL and time average



Fig. 11. Instantaneous streamline contours near the circular cylinder for different boundary placements of (a) 6D (b) 8D (c) 10D

(d) 12D (e) 20D at Re = 100.
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drag coefficient �CD are compared with the experimental and numerical values given in Refs. [1,8–10],

respectively. The values of CL and �CD are rescaled by a factor of 0.5 according to the definitions in [8–

10]. In the case of the square cylinder, the numerical data available in [8–10] involve blockage effects

due to the use of zero tangential stress conditions on the lateral portions of the outer boundary. No such



Table 3

The effect of far field boundary placement on Strouhal number and peak lift coefficient for uniform flow past the square cylinder at

Re = 100

Far field boundary Strouhal number (St) Peak lift coefficient (CL) Average drag coefficient ð�CDÞ
6H 0.1459 0.1334 1.533

8H 0.1449 0.1345 1.499

10H 0.1438 0.125 1.4708

12H 0.14388 0.125 1.4045

20H 0.14388 0.1255 1.4

Numerical 0.159 [10], 0.147 [9] 0.13 [9] 1.4 [9]

Experimental 0.1410–0.1450 [1] – –
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conditions have been utilized in the present work and hence the values reported are free from such blockage

effects. As discussed in [8,9], blockage effects tend to cause a slight increase in the value of St and the peak

value of CL. Thus, values in Table 3 must be interpreted accordingly in drawing comparison with the

numerical data. The value of St and peak value of CL at 20H are lower than those reported in [8–10]

due to blockage effects. Further, the value of St agrees quite well with the experimental data. The primary

issue is the change in these values as the boundary is brought closer. The value of St and peak value of CL

increase by 1.4% and 6.3%, respectively, in relation to their corresponding values at 20H, as the outer

boundary is brought closer from a distance of 20H to 6H. Here, again it is observed that while there is neg-
ligible difference in values of St, the values of CL are affected more in bringing the outer boundary closer to

the cylinder. Increase in CL, of the order of 5–6%, as in the case of circular cylinder, is observed only for

outer boundary placements of 8H and 6H. A similar trend is observed in the values of �CD with a 5%

increase as the boundary is brought closer from 20H to 6H.

Fig. 12 shows the variation of CL with time for different boundary placements. From the figure it is clear

that there is a phase shift and there is a delay in the inception of instability. These effects are due to the

placement of outer boundary.
Fig. 12. Variation of CL at Re = 100 for different boundary placements for flow past a square cylinder.



Fig. 13. Instantaneous vorticity contours for square cylinder near outflow boundary for different boundary placements of (a) 6H

(b) 8H (c) 10H (d) 12H (e) 20H at Re = 100.
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Figs. 13(a)–(e) show the instantaneous vorticity contours in the wake and near the exit for different outer

boundary placements at the same phase of the shedding cycle. It can be seen from the figures that there is no

distortion of vortices as the outer boundary is brought closer to the cylinder from 20H to 6H. Figs. 14(a)–

(e) show instantaneous stream line patterns for different outer boundary placements at same phase of the

shedding cycle. This trend is similar to the one observed for the case of circular cylinder.

From the above observations, it can be stated that the application of PBC leads to a reasonably accurate
prediction of the unsteady flows investigated in this work even for a heavily truncated domain (6–8 times

the characteristic size of the body). The usage of PBC does not yield any distortion in the structure of the

flowfield near the outflow boundary even for the placement of the outflow boundary at relatively short dis-

tances from the body. Most significantly, as the outflow boundary is brought closer, the temporal evolution

of the unstable mode or perturbation is least affected as far as its amplitude growth rate and the frequency is

concerned. Thus, while PBC is suitable for computing of incompressible flows around immersed bodies, it

also appears to have good potential for carrying out a global, linear stability analysis of such flows.

The proposed extrapolation procedure has a stronger physical basis than CBC for incompressible flows
around immersed bodies which are governed by parabolic–elliptic equations. The proposed method can be



Fig. 14. Instantaneous streamline contours near the square cylinder for different boundary placements of (a) 6H (b) 8H (c) 10H

(d) 12H (e) 20H at Re = 100.
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implemented numerically in a straightforward non-iterative manner on different types of grids adding little

to the overall computations.

The main limitation of the method is that for problems involving spatially growing disturbances, the

method is not expected to work well on a heavily truncated domain. This is because the assumption of spa-

tially decaying vorticity in determining the variation of circumferential velocity �vh� in the radial direction is
in conflict with such a scenario. However, an investigation involving such a situation is actually needed to

ascertain the performance of PBC. From the computational viewpoint, the only limitation comes from the

fact that the extrapolation from the interior has to be in the radial direction. This involves a slightly greater

computational effort on a Cartesian structured as well as on an unstructured grid. However, the character

of extra computations involved in such situations is essentially non-iterative and therefore it can be argued

that such computations do not contribute significantly to the overall computational effort.
6. Conclusions

In the present work, a new approach for handling outflow boundary condition based on the radial

behavior of the velocity field at large distances from the body in external incompressible viscous flows

has been presented. While the theoretical basis of this approach has been known for a long time [13], sur-

prisingly it has not been used in numerical computations for such class of flows. It has been demonstrated

that the numerical implementation of this methodology is quite straightforward. The validity and the per-

formance of the method has been demonstrated through the classical problems of uniform flow past a cir-
cular and a square cylinder.

For these class of problems, it has been demonstrated that usage of PBC leads to accurate predictions

even on a heavily truncated domain. Thus, the computational efficiency of such class of flows can be sig-

nificantly enhanced by employing these boundary conditions. The issue of computational efficiency is even

more relevant for 3D computations. The development of boundary conditions in an analogous manner for

a 3D scenario and the subsequent assessment of its performance would be a part of future endeavors.
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